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Summary. For state-averaged multiconfigurational self consistent field (SA- 
MCSCF) wave functions, second-order geometrical response equations are 
derived that allow the determination of first-order configuration amplitude 
response for equally weighted, energetically degenerate states. The first-order 
response equations obtained in earlier work do not suffice to determine these 
particular responses parameters. To formulate such a derivation in a well defined 
manner, it is found that a specific linear combination of the degenerate states 
must be formed; this specific combination of states then defines how state 
energies and wave functions evolve as one passes through the surface intersec- 
tion. The linear combination among the degenerate states is dependent upon the 
molecular distortion for which the responses are to be evaluated. Expressions for 
first- and second-order directional energy derivatives for these energetically 
degenerate wave functions are also derived. All the equations obtained are 
computationally tractable and expressed in terms of quantities that result from 
optimizing the SA-MCSCF wave functions and from solving the first- and part 
of the second-order geometrical response equations. 
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1. Introduction 

1.1. Intersections of  adiabatic surfaces and non-adiabatic couplings 

In quantum chemistry, adiabatic potential surfaces are defined as the energy 
eigenvalues of the electronic Hamiltonian obtained within some approximation 
scheme and taken as continuous functions of the internal nuclear coordinates. 
Internal coordinates are used because electronic energies are not affected by 
translations or rotations of the nuclear framework. The number of internal 
coordinates for polyatomic molecules is therefore 3NA --6, with NA being the 
n~mber of nuclear centers. Each computational method implies its own particu- 
lar set of adiabatic surfaces. In this work, emphasis is placed on adiabatic 
surfaces that result from the state-averaged multiconfigurational self-consistent 
field (SA-MCSCF) method. 
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Potential surfaces are of fundamental importance in chemistry. They form 
the basis underlying the concept of equilibrium molecular configurations, the 
study of chemical reactions and the interpretation of molecular spectra. These 
functions of 3Na - 6  variables may intersect along "seams" of various lower 
dimension. Within such intersections, two or more eigenstates are energetically 
degenerate for the corresponding nuclear configurations. The degeneracies may 
or may not be imposed by symmetry; in any case, the treatment of such 
degenerate cases requires special attention for both computational and concep- 
tual reasons. Not surprisingly, there exist many good papers on these topics 
including more recent papers by Mead and Truhlar [ 1-4] and by Davidson and 
coworkers [5-7]. The very recent work of Frey and Davidson [7] presents an 
excellent review that focuses on symmetry-imposed crossings but also addresses 
general intersections. In Ref. [7] an extensive list of references is also given. 

The location and characterization of geometries at which intersections of 
adiabatic energy surfaces occur is of considerable importance. Non-adiabatic 
effects (i.e., couplings among adiabatic surfaces induced by dynamic motions of 
the underlying nuclei) are often large in magnitude for potential surfaces that are 
energetically close, or for surfaces that cross. Lengsfield, Saxe, and Yarkony 
[8-11] have shown that state-averaged multiconfigurational self consistent field 
(SA-MCSCF) wave functions are advantageous to use for the analytical evalua- 
tion of non-adiabatic coupling because the orbital and configurational descrip- 
tions of the interacting states can be treated in a "balanced" manner, and 
because the same set of orthonorrnal orbitals are used for the interacting states. 

The key to the evaluation of non-adiabatic couplings is the first-order 
orbital- and configuration-amplitude (so-called CSF) responses. These responses 
describe how the molecular orbitals and configuration mixing amplitudes (also 
known as CI-coefficients) of the interacting states respond to motions of the 
nuclei. Considering a nuclear distortion along the direction a, and denoting by 
K~ the amplitude on the basis function # for the molecular orbital i, the 
first-order orbital-amplitude responses are written as (~K~)/(Oa)= ~ j  U~K~. 

1 n 1 A' Similarly, when for state A the ampl'tude on configuratio I "s denoted CI,  the 
first order CSF-responses are written (OC])/(Oa)=~s a B VAsCI. That is, the 
first-order orbital- and CSF-responses are specified by the expansion-coefficients, 
U~ and V~B, which multiply the orbital or configuration mixing amplitudes prior 
to distortion, respectively. In the following, we refer to the V~B coefficient as the 
first order state-state responses among the A and B states. 

As shown by Lengsfield and coworkers [8], and by the authors and Boatz 
[12], these first-order orbital- and CSF-responses, necessary for evaluation of 
non-adiabatic coupling, result from solving the first-order geometrical response 
equations obtained by making the SA-MCSCF energy function, E sA, stationary 
and from the secular equations for each state contained in E sa. In Ref. [12], 
these equations are derived in detail and presented in a form that works for 
interacting non-degenerate states and for degenerate states that do not appear 
with equal weighting in E s'x. 

1.2. The case involving equally weighted degenerate states 
presents special difficulties 

To treat energetically degenerate states in a "balanced" manner, it is generally 
most reasonable to weight them equally in the SA-MCSCF E sA. Particularly, if 
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the energy degeneracy is imposed by symmetry, different weighting of the de- 
generate states in E sA is inappropriate, and may lead to non-credible CSF- 
responses. Since first-order CSF-responses for equally weighted, energetically 
degenerate states can not be obtained from the equations of Ref. [12], an 
additional theory that accomplishes this is needed. 

In this work, we show how second-order geometrical response equations can 
be used to reach this goal. In our derivation, for a nuclear configuration where 
two or more states are energetically degenerate and equally weighted, we assume 
that the first-order geometrical response equations of Ref. [12] have been solved 
for a molecular deformation lying along a chosen direction denoted a in the 3NA 
dimensional space that includes translations and rotations. These first-0rder 
equations are shown here to determine the orbital and certain of the CSF-responses; 
the remainder of the CSF-responses involve only the energetically degenerate states 
and are subsequently determined using the tools detailed in this work. 

The parts of the CSF-responses that can not be computed from the first-order 
response equations of Ref. [12] are the first order state-state responses among 
states that belong to the degenerate, equally weighted states. It is shown here that 
solving the part of the second-order geometrical response equations that arise 
from taking second derivatives of the SA-MCSCF equations with respect to the 
a direction gives these state-state responses among the energetically degenerate 
states. Combined with responses obtained from the first-order equations, these 
responses then completely specify the first-order CSF-responses of each of the 
degenerate states. 

An essential aspect of our deviation involves taking a particular linear 
combination of the energetically degenerate wave functions in a manner that 
makes the resulting eigenfunctions evolve continuously through the crossing 
points. This particular combination of states is defined in terms of the direction 
a in which the crossing is approached. For this reason, the resulting wave function 
and energy responses are given as directional derivatives rather than conventional 
analytic derivatives. Formulas for obtaining first- and second-order directional 
energy derivatives also result from this work and remain valid whether or not the 
degeneracy is symmetry imposed. 

In Sect. 2, we detail different situations under which two states can be 
degenerate, and we discuss considerations appropriate to these different situations. 
Section 3 contains the derivation of the response equations that allow the 
determination of first-order CSF-responses as well as directional first- and 
second-order energy derivatives for a set of energetically degenerate, equally 
weighted SA-MCSCF wave functions. In Sect. 4 we summarize and give our 
concluding remarks. 

2. General considerations for two energetically degenerate states 

2.1. Degenerate states a t  the reference geometry - three special cases 

When considering symmetry properties of states that are energetically degenerate, 
different situations can be observed. Generally two or more states may be 
energetically degenerate for a given nuclear configuration. However, the main 
features of these different situations can be understood by considering two 
degenerate states only. The discussion in this section therefore focuses on two 
degenerate functions, although it should be stressed that the subsequent analysis 
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and hence the primary results of this paper apply equally well to triple and 
higher degeneracies. 

At a so-called reference geometry, we denote the set of nuclear coordinates as 
x, and we assume that the two electronic states ~T(X) and 7Jv(x) are energeti- 
cally degenerate and diagonalize the electronic Hamiltonian H(x) at x: 

(g'r(x)lH(x) [7~T(X)) = Er(x) = Ev(x) = (~v(x)lH(x)Ig'v(x)), (la) 

(7Jv(x)lH(x) Ikgr(x)) = 0. (lb) 

In Eqs. (1), Er(x) is the electronic energy for state T at the reference geometry. 
The electronic Hamiltonian at the reference geometry has a specific point 

group symmetry, and all states are labeled according to which irreducible 
representations of that point group they belong as well as with their spin 
multiplicity. In this work, the symmetry of an eigenstate is therefore defined as 
the combined spatial and spin symmetry. Since the two states 7Jr(x) and 7Jv(x) 
are energetically degenerate, but may or may not be symmetry degenerate, three 
different situations need to be delineated: 

(a) The two states have different symmetry. 
(b) The two states have the same, symmetry-degenerate E-symmetry. 
(c) The two states have the same, non-symmetry-degenerate symmetry. 

Case (a) is usually described as a symmetry allowed crossing which can happen 
in a space of dimension 3N~ - 7 (recall that the dimension of the general potential 
surface is 3Na - 6). An example of case (a) is provided by the Bell2 species in 
C2v geometry where the lowest 1A 1 and 1B 2 potential surfaces intersect [13]. The 
space within which C2~ symmetry is preserved is two-dimensional; hence, the seam 
within which the 1A 1 and 1B z surfaces intersect is one-dimensional. 

Case (b) is described as a symmetry imposed crossing, and the Jahn-Teller 
theorem [14] applies to this case if the molecule is nonlinear. An example of case 
(b) is provided by the 2E' states of B3 at D3h geometry [15]. Case (c) is called an 
accidental crossing. The three-dimensional potential energy surfaces belonging to 
the two lowest 1A~ states of 03 at the specific C2~ geometry described by 
Xantheas, Elbert, and Ruedenberg [ 16], where these surfaces intersect serves as 
an example of case (c). 

Teller [17] and, after a dispute on the topic, Mead [18] showed that for 
nonrelativistic Hamiltonians and for triatomic or larger systems, energetic degen- 
eracies for states that globally belong to the same spin and space symmetry, can 
appear in 3N~ - 8  dimensional spaces. For the triatomic systems that serves as 
examples of cases (b) and (c), we therefore expect the degeneracies to appear in 
one dimension. For the B3 example it is obvious that the one-dimensional 
degeneracy preserving seam is specified by the "breathing" coordinate which 
preserves the D3h geometry. For O3, the described point of intersection appears 
for C2~ symmetry. However, this point belongs to a one-dimensional seam of 
intersection that elsewhere correspond to molecular C, symmetry [16]. 

2.2. Infinitesimal distortion away from the reference geometry 

Now consider an infinitesimal displacement away from the reference geometry 
from x to x + i along the distortion direction denoted a. The functions ~r (x)  
and 7~t:(x), whose CI coefficients diagonalize the Hamiltonian at x, will evolve 
into new functions 7Jr(x + 2) and kgv(x + 2) which may not diagonalize the 



Energetically degenerate MCSCF electronic functions 11 

Hamiltonian at this infinitesimally displaced geometry. However, there always 
exists a unitary transformation to combine kUr(x + 2) and ~v(x  + 2) into two 
states, ~R(x +2) and 7ts(X +2) that do diagonalize H at the infinitesimally 
displaced geometry. The criteria defining this unitary transformation are to be 
found later in Eq. (30). For now, it suffices to note that this transformation is 
dependent upon the coordinate a along which the distortion is to be made. For 
this reason, the derivatives obtained in this paper should be viewed as "direc- 
tional derivatives" rather than as analytic derivatives. 

Assuming that such a unitary transformation has already been performed, we 
continue our analysis with the two eigenstates 7JR(x) and ~s(X). At the infinites- 
imally distorted geometry we consider the point group that applies to the 
Hamiltonian at both the reference and the infinitesimally displaced geometry 
(notice, if no rotation or translation is involved in the distortion, this point group 
is the one that also applies to the Hamiltonian at the displaced geometry). 
According to this definition, the infinitesimal distortion of the nuclear framework 
can either preserve or lower the point group symmetry. Contingent upon either 
of these outcomes, several resulting symmetries of the eigenstates at the displaced 
geometry are possible, and the three cases (a), (b), and (c) can accordingly be 
split into subcases which are important to distinguish among. 

Two subcases appear under case (a) when distortions occur: 

(al) The two states have different symmetries at the displaced geometry. 

(a2) The two states have the same, non-symmetry-degenerate symmetry at the 
displaced geometry. 

To illustrate, consider again the Bell2 molecule in C2v geometries at which 
the lowest 1A 1 and 1B 2 potential surfaces intersect [13]. A C2v symmetry-preserv- 
ing distortion of this system provides an example of case (al). Case (a2) appears 
for a non-symmetry preserving distortion that lowers the symmetry to either Cs 
or C1 symmetry, in which case, at the displaced geometry, both states are 1A' 
states if of Cs symmetry and ~A states if of C1 symmetry. Notice that for the 
Bell 2 example, although C~ can never become the point group of the stationary 
molecule, if rotational motion is considered as a source of non-adiabatic 
coupling, it could become the point group appropriate for handling such 
couplings. 

Under the same class of distortions, case (b) splits into three subcases: 

(bl) The two states have the same E-symmetry at the displaced geometry. 

(b2) The two states have different symmetries at the displaced geometry. 

(b3) The two states have the same, non-symmetry-degenerate symmetry at the 
displaced geometry. 

Let us again take the example of two 2E' states of the B 3 molecule at D3h 
geometry [ 15]. A O3h symmetry-preserving distortion such as the totally symmet- 
ric breathing mode leads to case (bl). If the distortion lowers the symmetry to 
C2v, the states at the displaced geometry have 2A~ and 2B 2 symmetry and case 
(b2) is obtained. For distortions that leads to C~ symmetry, both states become 
2A/ states and we realize an example of case (b3). 

For case (c) there is only one possible subcase: 

(cl) The two states have the same, non-symmetry-degenerate symmetry at the 
displaced geometry. 
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We illustrate this by again considering the special C2v geometries where the 
lowest 1A 1 s t a t e s  of 03 intersect [16]. If  the distortion preserves C2v symmetry, 
the states will still have 1A~ symmetry, and if it lowers the symmetry to C~, then 
the states both become ~A' states. 

In cases (al) and (b2), symmetry forbids mixing of the R and S states, and 
therefore the first-order as well as higher-order state-state responses that could mix 
~Yn and ~s,  are zero. In case (bl) the 7JR and ~s  states remain energetically 
degenerate as the system is distorted. Therefore, the first-order state-state response 
among 7JR and kVs is not well defined (i.e., is arbitrary), but can be chosen as zero. 

For the three remaining cases, the first-order geometrical state-state response 
is not so trivially defined by symmetry; as specified earlier, these responses are 
likewise not provided through the equations of Ref. [12]. Response equations for 
SA-MCSCF wave functions which allow the determination of the state-state 
responses in these cases, and in more complex cases where more than two states 
are degenerate at the reference geometry, are derived in the next section. Since 
responses of wave functions and of energies are both determined via the 
SA-MCSCF approximation to the Schr6dinger equation, they are closely related. 
That is, the derivations in the next section also provide equations needed for 
evaluating first- and second-order directional energy derivatives for equally 
weighted energetically degenerate SA-MCSCF wave functions. 

3. Theoretical approach 

3.1. Basic definitions 

This subsection introduces, the notation and basic definitions needed for the 
evaluation of the response equations that allow the determination of all geomet- 
rical linear responses and directional first- and second-order energy derivatives for 
SA-MCSCF wave functions. 

Consider a molecular system in a specific configuration defined by the 
positions of the nuclei. The set of normalized electronic SA-MCSCF wave 
functions is denoted { 7~A [A = 1, 2 . . . . .  N}. These wave functions are expanded 
in a subset of all symmetry adapted orthonormal configuration state functions 
(CSF's), {~, 1 I =  1, 2 , . . . , U } ,  as: 

N 

7'A = ~', C]  ~,,  (2) 
I 

where the Cz a ' s  are the CI-coefficients of 7JA . Since the electronic wave functions 
are taken to be normalized, the CI-coefficients must obey the condition: 

Z g'~B+ C A  • ~z '~z = 6B~. (3) 
I 

The CSFs are created from a set of orthonormal molecular orbitals (MOs), 
{~o i l i  = 1, 2 . . . . .  M}, which again are created as linear combinations of a 
chosen set of atomic orbital (AO), or symmetry adapted orbital (SO), basis 
functions, {X, I # = 1, 2 . . . .  , M}: 

M 
i q9 i = ~ KuX, ,  (4) 

/t 

where the K~'s are the MO coefficients. 
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Assuming that the states and orbitals are real and taking the set of electronic 
state functions to diagonalize the electronic Hamiltonian in the space they span, 
the following equations for the CI-coefficients must be fulfilled: 

Y, C f C~J (61jEB - -  H , s )  = O. (5 )  
IJ 

EB is the energy for state B and the Hamiltonian matrix elements that appear in 
this equation and elsewhere are defined as: 

H,j  - L u?u + F, (ij I kl)rok,,  (6) 
ij ijkl 

where the symbols 7~ J and F~z denote the one and two particle coupling 
coefficients, respectively, and hij and (ijlkl) denote the one and two electron 
integrals over the MOs; the (/j |kl) are written in Mulliken notation. 

The molecular orbitals are assumed to variationally optimize the SA energy 
functional: 

g2 I2 

ESA --= Z mR (7~n IH[gJR ) = ~ mRG,  (7) 
R R 

which only involves a subset of all N electronic states. The number of states in 
this subset is denoted f2 and these states are called internal states and labeled 
R, S, T, U. Accordingly, the states not in this subset are termed externals. The 
number of external wave functions is denoted A, and f2 + A = N. The co R in Eq. 
(7) is the weight factor assigned to the internal state R. 

In the SA energy functional, only the f2 internal states appear, and these 
states are assumed to diagonalize the Hamiltonian as in Eq. (5). For purposes of 
derivation, all the external plus internal states are assumed to obey Eq. (5). 
However, as demonstrated explicitly later in this paper, the precise nature of the 
external states (in particular that they obey Eq. (5)) disappears in the final 
working equations. 

The condition that E sA be stationary with respect to variations in the 
molecular orbitals in the ~PR's results in having the SA-Generalized Brillouin 
Theorem (GBT): 

/~SA - -  ~ . A  = 0 ,  ( 8 )  

fulfilled. 
The SA Lagrangian in Eq. (8) is defined as: 

~SiyA ~ ~ hikTj S.A q- 2 Z (ik I SA Im)Fjkzm, (9) 
k k/m 

with the one and two particle SA density matrices defined as the weighted sum 
of one- and two-particle density matrices involving only the internal states: 

7 sA -= Z ~°RYff, (10a) 
R 

f2 

con F okt. (10b)  
R 
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The density matrices for each of the internal states are given as: 

?~--Z F"~"  .u (lla) ~'-~I "-~J Y ty , 
/ J  

r,:D, = Z c f  ~"~"..s ~¢k1- (l lb) 
/Y 

To maximize understanding of the equations obtained in this section, in 
agreement with the above notation and the notation in Ref. [12], we adopte the 
following conventions: 

v, #, 0, a 
i ,j ,k,l,m,n,p 
I,J,K,L 
A, B 
R,S ,T ,U 
P,Q 

denote AO's or SO's, 
denote MO's, 
denote CSF's, 
denote states in general, 
denote internal states, 
denote external states. 

In order to derive geometrical response equations, one can directly differenti- 
ate Eqs. (5) and (8) with respect to the coordinates that define the distortion to 
be considered. To determine the geometrical first-order CSF-responses for en- 
ergetically degenerate and equally weighted internal SA states, we need to take 
first- and second-order derivatives with respect to the distortion coordinate a. 
These differentiations and the resulting equations are treated in the next two 
subsections; before doing so, we define a few quantities and introduce identities 
that will be used for these derivations. 

The geometrical first- and second-order state-state responses among the 
states A and B, V]B and V ~ ,  respectively, are defined from the first- and 
second-order CSF-responses for state A with respect to the coordinate a: 

~ c ,  ~ = 
3a V~ABC~' (12) 

B 

( ~ 2 c A  
- ~  r ia~ ~s (13) 

~a2 B VAB"'~I" 

These definitions lead to the following identities: 

0 = V~B + V~A, (14a) 

OC] ~Cf (14b) 0 -- v : ,~  + v 3 5  + 2 L Uaa ~a ' 

OV~ ~, OC] ~C ~] (14c) Oa - V 3 ) + ~  Oa ?a ' 

o c ,  ~ ~ c  ~, 
~a 8~ - ZD V~DV~sD" (14d) 

Similarly, the geometrical first- and second-order orbital responses among or- 
bitals i and j, U~. and U} a, respectively, are defined in terms of responses of the 
MO-coefficients: 
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Z o U iKit, Oa j 

O2Ki~ rU~ Xj 
# a  2 = Z "-"ji - - i  t. 

J 

These definitions imply the following identities: 

(15) 

(16) 

0 = U~ + U~ + S~, (17a) 

0 = U~ a + U); a + S~ a + 2 ~ (Ui~kU~k -- saks]k), (17b) 
k 

~U~ ~o 
~a - Uij - ~ U~U~j ,  (17c) 

k 

with S} and S~. ~ defined as: 

S ~ = ~  K ~ K ~ O ( X ~ !  X v )  , (18a) 
pv 

a a  . ( 1 8 b )  

#v 

As stated above, these identities will be of considerable use in the derivations 
carried out below. 

3.2. Linear geometrical response equations 
and f irst-order directional energy derivatives 

3.2.1. The response equations. Just as Eqs. (5) and (8) constitute the fundamental 
working equations of SA-MCSCF theory, their derivatives form the basis on 
which the desired wave function and energy responses can be determined. With 
the first-order energy derivative along the coordinate a, E~, defined as: 

E~ - Oa ' (19) 

first order differentiation of Eq. (5) with respect to the coordinate a, gives the set 
of equations: 

0 6saEaB+(EB- -EA)VasA- -~ ' ,  s A ~ H H  = CI C j  • (20) 
tJ Oa 

The derivative of the Hamiltonian matrix with respect to the coordinate a 
appearing above is given in terms of quantities defined earlier and the so-called 
derivative Hamiltonian, as: 

a Z h;k(Tjk + 7jk) + 2 Z ( i k l  H J l  aa = H H  + U~ zs J, lm)(Vjko, , + Vykt,~) . (21) 
" k l m  

The derivative Hamiltonian is: 

HT -Zho . -  
+ Z ( U I  ° " kl)  F ~jkz, (22) 

i j  i j k l  
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where: 

i .y Oh,~ (23a) h~; - ~ K ,  Kv aa ' 
.uv 

(ij l kl) a -  2 K~K{KkoKt. O(/~!Qa). (23b) 
,uvoa 

Similarly, first-order differentiation of Eq. (8) with respect to the coordinate 
a gives the equation: 

O A 
SAa - -  8SAa 0 = e o + X Y', V~eCOR y" "~,r'e'TJR,--O -- T~") 

R P J 

+ Z VaRS(OR -- °)s) 2 CR(T} s - -  T} s) 
S > R  J 

-~- 2 /-?a f v S A  SA SA SA SA SA - - Y~k. Y~,'k. + 6~ke.~- 6;.ekj + 6;.ek,- ] V n k [ J  ijnk r ) i n k  "-}- __ 3jk~SiA __ SA 
n > k  

- -  E ~ a  I ' v S A  SA SA SA 
O n k L ~ U k .  - -  Y~,~.  + '~, .*kj  - -  ~ j . ~ k ,  ] 

n > k  

1 ~ a  [ y S A  SA SA SA - - 2 S  --nnt--ijnn -- Y~inn ~-ain~nj - - ( ~ j n ~ ' n i  1, 
n 

where we have used the definitions: 

(24) 

/~a SA eSAa ----Z..",kYJk + 2 Y. (ikl  a sA lm) ryklm, ( 2 5 )  
k k l m  

lm)(Qk,~ + r+~,~) , (26) 
I [ _ k  k lm  d 

SA , , , ] a  j k l m  Y~.k -- he,d sA + 2 E {(in I I marsh  + (il I SA SA nm)(Fytkm + Fj't,,k)}. (27) 
/m 

3.2.2. Problems that arise when degenerate states have equal weighting. As shown 
in Ref. [12], the fundamental results of Eq. (20) and of Eq. (24) for B referring 
to internal states only (i.e. B = R), can be combined to give the geometrical 
first-order response equations that determine most, but not all, of the desired 
orbital responses and state-state responses that involve internal states. If two or 
more of the internal states are energetically degenerate and equally weighted, it 
is seen from Eqs. (20) and (24) that all terms involving the state-state responses 
among these states drop out. Therefore state-state responses among equally 
weighted energetically degenerate states can not be resolved from these geometri- 
cal first-order response equations. If energetically degenerate states are assigned 
unequal weights, the terms involving these same state-state responses remain 
present in Eq. (24), and it is therefore possible to resolve these state-state 
responses from the geometrical first order response equations/f unequal weight- 
ing are (probably inappropriately) assigned to the corresponding degenerate 
states. 

3.2.3. Unitary transformations of  degenerate states in preparation for the distor- 
tion. in all cases where the states A and B belong to a degenerate set, Eq. (20) 
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expresses an important constraint, which is dependent on the distortion coordi- 
nate and which must be obeyed by the CI coefficients of these states: 

0 ~ s A OHIj (28) = Cz Cs Oa " 
zs 

In general, this condition will not be fulfilled for the degenerate states 
originally obtained in the SA-MCSCF procedure (in the two dimensional example 
in Sect. 2 these states were denoted 7~r and 7/v). However, due to the energetic 
degeneracy among these states, arbitrary linear combinations that fufill Eq. (28) 
can be formed of these states. Defining the symmetric matrix K a with elements: 

KaBA =~ 2 B a OHzj Cz Cs  , (29) 
zs ~a 

the unitary transformed eigenstates (7~R and 7/s in the example of Sect. 2) are 
defined in terms of the normalized eigenvectors v" of the secular problem: 

(K  ~ - Eal )v a = O. (30) 

That is, the normalized eigenvectors v ~ define the unitary transformation matrix, 
briefly discussed in Sect. 2.2, that is used to transform the "original" degenerate 
eigenstates to the "transformed" degenerate eigenstates that fulfill Eq. (28). The 
eigenvalues Ea's of Eq. (30) are the directional energy derivatives in the direction 
of coordinate a for the "transformed" degenerate states. 

The first order responses involving degenerate internal states obtained from 
the geometrical response equations of Ref. [ 12] apply to the "original" states. By 
using the unitary matrix defined from the va's, these responses must be trans- 
formed from the "original" state basis to the "transformed" state basis. 

If, although likely inappropriate, unequal weights are assigned to degenerate 
states, it might be difficult to impose the condition expressed in Eq. (28). For 
example, unequal weighting of states that are supposed to be energetically 
degenerate (case (b) in Sect. 2) might artificially lift this degeneracy. Unitary 
transformations among such states will therefore not give new eigenstates, and 
hence the condition in Eq. (28) can not be imposed. In such cases, credible 
CSF-responses can only be found if equal weighting of the degenerate states is 
used. 

3.2.4. Directional derivatives o f  surfaces and wave functions exist although analyt- 
ical derivatives do not. The extra condition expressed in Eq. (28) was not treated 
in Ref. [12], nor has it, to our knowledge, been addressed in any other published 
work. However, this is a crucial condition, which applies to energetically 
degenerate CI-functions in general. For eigenstates that are energetically degen- 
erate at a given reference geometry, but not energetically degenerate at a 
geometry infinitesimally distorted along the a coordinate, this condition guaran- 
tees that the eigenstates will evolve continuously with the distortion. If the 
condition is not fulfilled, the eigenstates will be discontinuous, as a consequence 
of which, the state-state responses and the related non-adiabatic coupling 
elements will be ill defined. This reflects the fact that intersecting potential 
surfaces are not analytically differentiable. Therefore an energy gradient is 
non-existing although the energy slope and higher derivatives for a specific 
direction are well defined. 

It is appropriate at this time to clarify the above results in light of the 
conventional point of view on adiabatic potential energy surfaces as described by 
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Davidson [5]. It is convention to define the kth potential surface of global 
symmetry F as formed from that energy which, at each value of the internal 
nuclear coordinates, is obtained as the kth energy (in order of increasing energy) 
of the SA-MCSCF process. Generally, potential surfaces defined in this manner 
are not differentiable at crossing points; that is, for these crossing points molecular 
gradients or hessians can not be found, and also for the conventional adiabatic 
surfaces directional energy derivatives as found from Eq. (30) do not apply. 

However, directional energy derivatives do apply to the surfaces which are 
simply defined by the energies of the continuous states detailed in Sect. 3.2.3. 
Herzberg and Longuet-Higgins [19] denote such surfaces as conically self-inter- 
secting potential (CSIP) surfaces. The CSIP surfaces are closely related to the 
conventional adiabatic surfaces but one CSIP surface consists of two or more 
adiabatic surfaces. To better understand this point, let us take an example from 
the work of Davidson [5]. 

For Doo h conformations of the H 3 system, the lowest 22;+ and 22;+ eigenstates 
cross. When distorted, via asymmetric stretching motion, to C~v symmetry, both 
of these states evolve into zS_, + eigenstates. The energetically lower of the 22; + 

2 + and 2 + 2 + states connects to the lower of the Sg Su states (i.e., to S~ at one side 
of the crossing and to 2z~u + a t  the other side of the crossing). Following a path 
that goes through the crossing (for instance the path along the D~h preserving 
coordinate) the energetically lower eigenstate adiabatically evolves into the 
energetically higher. A path starting and ending at the same nuclear configuration 
can therefore be chosen such that when adiabatically following one of the 
considered eigenstates, this eigenstate starts as the energetically lower and ends as 
the higher, or vice versa, starts as the higher and ends as the lower. The two 
different energies for the same nuclear conformation obviously belong to two 
distinct conventional adiabatic surfaces. According to the definition, however, 
these two energies belong to the same CSIP surface, as will all energies for the 
states considered in this example. See also Fig. 1. 

Energy 

Fig. 1. Qualitative sketch of adiabatic 
energies as function of two nuclear 
coordinates Q1 and Q2 for two 
eigenstates. According to the 
conventional definition [5] the 
energies define two distinct adiabatic 
potential surfaces. These surfaces are 
connected through the intersection 
point, and according to our definition 
they are to be viewed as one CSIP 
surface (see text). The dashed line 
shows a path obtained by following 
the energy that corresponds to an 
eigenstate as this eigenstate is 
adiabatically distorted along a path 
that leads through the nuclear 
configuration of the intersection 
point. The path starts at the lower 
point (L.P.) and ends at the upper 
point (U.P.). The nuclear 
configuration at the L.P. is the same 
as at the U.P. 
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If  one only considers potential surfaces in regions away from intersections, it 
is of course reasonable to treat them as separate surfaces. On the other hand, if, 
as in this work, one deals with potential surfaces in regions where they are 
connected, one needs to treat them as such and in this situation our definition of 
a CSIP surface is appropriate. 

3.3. Second-order  response equations and  second-order 
directional energy derivatives 

3.3.1. The two basic equations. To make further progress toward obtaining 
equations for the state-state responses among degenerate, equally weighted 
states, we assume that the geometrical first-order response equations have been 
solved for the orbital responses and for the state-state responses which they 
define. Further, we take as our energetically degenerate eigenstates those defined 
by the eigenvectors to Eq. (30) that satisfy Eq. (28). 

Taking the second derivative of Eq. (8) with respect to the coordinate a gives 
the following equation: 

K2 A 

,..-,j k a i j  
R P J 

f2 

+ Y v~(~o~ - ~ )  Y ' ~ ' ~  - v~ ~) 
S > R  J 

~ -  E T T a a [ v S A  SA SA SA SA SA "~.k,=O.k -- Y)i.k -- Yu*. + Y~ie. + 5ike.j - 5jkgsi a - 6i.e~ff + (~njgki ) 
n > k  

- 2 s ~  > COs~i 8C~8CSI E [", R [ T J S  ) 
R Oa 8a s 

,~.-,j ~ t i j  

+ ~ o ~  ~a - ~J') -Yg-a  ~ '  ' - ' j  

V ~,aJR 
8Cff 

+ 2 co R 
R ~ Oa ~"u 

+O~",  

where we have introduced the following definitions: 

(31) 

0 0. -= 2 ~ --a - -  ^SAa _ ~ SAa v S A a  __ "vSAa]  
aa U n k ( O i k U n j  t"jk~ni "~- ~- ijnk * j ink t 

nk 

+ 2 ~ Upk ~ r,ra v s A  rra vSA a ~ ,Vni  ~tnjp k - -  ' J n j  a n i p k )  "~ 4 ~ [ ( in  [ p k ) l S n ~ A k  - -  ( J n  [ pk)Zinpk 
pk  n npk 

s .  ,~a - Y}i~. + ~in~kj --  5jn~ki ) 
n > k  L ': 3 

s .  s .  
- ( u . , u . ,  - S~,Sa,) + : ~ . n j  (rUo. -- U'n. + ai.~nj -- aj.~.~) 

SAaa SA~a (32) 
d~- g ij - -  8 j i  , 
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F 
ZV R - T~  R - T~ JR + E U~k/6,k T J . f .  5jk T~f 

nk L 

..{_ E I 'Rt 'v1J  JI Ig Jl 1 Y u,~k Y~ink Y jink ) ~'J l \ ~t ijnk "I- -- -- 
I d 

hikT:k + 2 E (ik l " lm)Fjmm. 
k klm 

For shorthand notation in Eqs. (32)-(34) we have defined: 

(33) 

(34) 

13" / J  • Yi]nk =- hi.Yik + 2 E {(in [ u is lm)F jktm + (il] IJ nm)(Fjlkm + Fjlmk)} , (35) 
lm 

and: 

ySAa t,a SA 2 ~  {(in ~ SA nm) (ritkm ijnk = "" in 7 jk "~ [ _1_ [ SA lm) Fjklm (il . SA + Fflmk)} ' (36) 
lm 

T a J R ~ I  (~k ) u - C ~  a u J1 h,k(Vjk + 7~) + 2 E (ik [ a lJ lm) (Fjklm -]- Fjklm ) , (37) 
klm 

SA a a SA SA Z;n~k ~- E Up I E [ T , a  F ' S A  D-' km* jnlm -- Unm(F jmlk -+- F jmkl)], (38) 
l m 

with: 

SAaa '~ij ~ E l~aa S.A 1 ~aaFSA "ik 7:k + 2 ~ (ik I tm, "jklm, 
k klm 

(39) 

aa i J 8ah"~ (40) 
h• -=~KuK~ 8a 2 , 

,uv 

K i K J K k r  ' O2(~-~v ! Oa) (41) (ij J kl) a° - y~ __.__~__~__~ t?a2 . 

#vQa 

Taking the second derivative of Eq. (5) with respect to the coordinate a gives: 

O = 6BaE~a + (E~ -- E~A)V~A + ( E B - - E A )  v ~a~ 

( O C f  CA @ C  I B o C J )  oH'J~ E t '~Bg"AO2HIJ, ( 4 2 )  
--Ij~E a a  ~ u u - t j  "~''~s 8a 2 

with the second order directional energy derivative E~ a defined as: 

02E8 
EaB a =-- Oa 2 . (43) 

Using Eq. (14b) it can be seen that Eq. (42) is symmetric in A and B. 
Equations (12), (14d), and (20) can now be exploited to rewrite Eq. (42) as: 

o = 6 .oE~.  + ( E .  - E~)V~5 - E U~ ~ Z "~.,"~':'~,~, - %~) 
i>j J 

+ ~ CJ N3~ - 2 "7" Oa \~ff-a - (~IjEaB ' (44) 
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where N~,~ is defined as: 

+ I ~ T ~ ' [  S~a + 2 ~ (U~kUi~-S~kS~) k 

- ~, C~H~] - 2 2 U ~ T ~  n 
I ij 

- 2 2 U~U:k Z Cf(Y~.k + r~Z,k) • (45) 
ij nk 1 

Notice that, in contrast to Eq. (42), Eq. (44) does not include products of first 
order CSF-responses; that is, Eq. (44) is linear in the response quantities. 

3.3.2. Combining the two equations into one. In this work, we are only interested 
in responses that concern the internal states, thus we are lead to use Eq. (44) with 
B referring to the internal states (i.e. B = R). Since Eq. (31) and these B = R 
cases of Eq. (44) are coupled, it is convenient to set up a single matrix equation 
that contains both sets. In order to simplify the notation, we assume that within 
the internal states there exist only one set of energetically degenerate states. That 
is, there may be a set of states that are doubly, triply, or more degenerate, but 
there are not two or more such degenerate sets of states. All states belonging to 
this degenerate set are assumed to be internal states and these degenerate states 
are all assumed to have the same weighting factor denoted co a. For further 
convenience, the indexing of the states is constructed such that these degenerate 
internal states appear first, then come the other internal states after which come 
the externals. The matrix equation that embodies Eq. (31) and Eq. (44) for B 
referring to internal states then reads: 

[ 11 2 A41 As1 6 1 21 o° 'P2As,A66, vsv4 i ̧  A 73' 0 6 if3 D (46) 
,4 41 0 "444 05 
A 51 0 0 0 

A 61 0 0 0 0 V 

The definitions of the individual terms in the above matrix are found below. 
Recall that the CSF-responses of the degenerate equally weighted states give 

rise to the state-state couplings that can not be obtained by solving the first-order 
equations. To separate out these more-difficult-to-compute state-state couplings 
from the couplings that must first be obtained from the first-order equations, let 
us express the CSF-responses of the degenerate states as follows: 

W~R + ~ ° s = VRsCI. (47) 
~a s 

The W~ R factor contains all contributions to the CSF-response of state R except 
those arising from the degenerate equally weighted state-state responses. Here 
and in the following, O d is the number of energetically degenerate internal states. 
Accordingly, O" is the number of internal states that do not belong to the 
energetically degenerate set. On the right hand side of Eq. (47) the first term, 
W~ R, which is defined through Eq. (12), is built from information already known 
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from solving the first-order geometrical response equations and from the trans- 
formation matrix found through Eq. (30). The second term is a sum that 
involves state-state responses among degenerate internal states (i.e., it contains 
response variables found from Eq. (46)). When Eq. (47) is inserted into Eq. (31), 
the terms involving products of first-order state-state responses among degener- 
ate internal states combine to yield identically zero as a result of which Eq. (46) 
is linear in all variables, 

3.3.3. Definitions of  the matrix elements. The full matrix A on the left hand side 
of Eq. (46) is a square matrix, and the blocks of A are arranged such that rows 
for the block A ~B are labeled in the same way as columns for the block A ~. In 
defining the matrix blocks in Eq. (46) we therefore only need to discuss the 
labeling of the rows. All of the matrix blocks and vectors are defined in Eqs. 
(48a)-(48t): 
A ~ . ~  = r s ° ~ -  r ; ~ . ~ -  SA SA s~ SA S~ Y~jk. + Y)ik. + 6~ke,j - 6jk esh -- 6i.~kj + 5 jnek i  , (48a) 

~ t'w S ~, aJR JS - , ~ u  + W~:(T~ - T~ ~) - 7"~ ) - ~ a ~ : ~ R  A ~6Rs =- 2f.o d ~ ' - ' J -  O" t " R  ,~aSS JS , ,  S I .~i j  

~I aT T S JR - -  -- --(DTI~CT c y  W l  Ca [ C I ( T  O" - Tyii") "-'Jrt'R(TJS-- , 
(D d ~a 

(48b) 

D b - 2  ~ co s 8a 8a "~J~-u - 
S > R  

od 

+2c°a ~ ~ W7 RW7 s Z C~(T~ s -  T~ s) 
S > R  I J 

o, o~ 8 C f  W~ s c,R~Tss 

+ o R ~  aa L aa 
t?d 

+ o~ Z Z w : [ w : c ~ ( r : / '  - v~ R) - 2 w:-"  (~/: - 4 : ) ]  
R /Y 

y 8C o. 
a~ ~ =aS.  20aa Z g r A : a R ' ~ R  . .  (48c) - 2  ~ o , ~  8a ~"  - , s " J  ~o - O N ,  

Vg. = U~ ~. (48d) 
For the elements in Eqs. (48a)-(48d) the rows are labeled by the molecular 
orbital indices i and j, for which the orbital rotation among orbitals i and j is 
allowed and i > j .  The orbital rotation among i and j is allowed if the internal 
wave functions emerging from the rotation can not alternatively be generated by 
a unitary transformation of the CI-coefficients. 

-21  _ .,~31 ~? :.rsR Tk. ), (48e) A RP,nk ~ RP,nk ~--- ('DR E "'J \ Jtnk - -  JR 
J 

-33 6 . r feeoa . (Ee  - E . ) ,  (48f) A 2R2p, TQ ~- A Rt, ,T Q -= 
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- 3 6  J ~(~HIJoa ) ARp, rv =- 2coR E (6Rr Cv  -- 6 n v C f )  E Cff - 6HE~ , (48g) 
I 

j~zp =_co, ~ Cff N~,aR -- 2 ~ --OIjEaR , (48h) 

\-~--a - 61jE] , (48i) 

l ~p  = l~o  = V]~,. (48j) 

The rows for the elements in Eqs. (48e)-(48j) are labeled by the state indices R 
and P. P runs over external states while R for .~ZR'~,k, ~ 2  sQ, IT~e, and / ~ p  
belongs to f2" (i.e. the internal non-degenerate states), and i'or ,43~,,k, A33,sQ, 
~ 6  rt~ ' I73p, and/~3Re belongs to f2 d (i.e. the internal degenerate states). 

41 A 51 JR ARs,°k -- RS,,k -- (COR -- COS) Z rSITJR "~J~'nk -- Tkn), (48k) 
J 

44 55 6Rr6SV(COR -- COs)(Es ER), (481) A RS, T U =--ARS, T U ~ 

['OHIj a \ 
A~6s, rv = 2 ( c o . - - c o s ) ~  ( 6 R r C V l - 6 m l C f ) ~ j  C s ~ - ~ a - - 6 . j E R ) ,  (48m) 

D4s=-(coR-cos )  ~s CS N ~ - 2 ~ - - ~ - a  \ Oa --OIjEaR ' (48n) 

D5S'~-((J)R--O)S)~jcS{ N~IaR-2~I W~R(OH1J ) t  \ Oa - 6IjE~ ' (480) 

V4s - V~s =- V~s . (48p) 

For all terms in the Eqs. (48k) to (48p) the rows are labeled by the internal state 
indices R and S. S denotes states belonging to 12" while R denotes states that for 
A41 A 4 4  V 4  and D4s belong to f2" but only if COR ~ COS and S > R, and RS nk, ~-x RS TU, cRS~ 

' 51 ' 55 56 for A RS,.k, A RS, TV, A RS, rV, V~s, and D i s  belong to f2 d but again only if 
coR ~ cos. 

A 61 JR RS,nk ~- Z I~S[TJR ~s  t~,k -- T~, ), (48q) 
J 

A66,T v = 2 ~ (6RrCVi -- ~RvCT) ~ C s -- 6tjE~ , (48r) 
I J 

\--~-a - 6, jE~ , (48s) 

V6s =- V~s. (48t) 

Also, for all terms in Eqs. (48q)-(48t)  the rows are labeled by the internal state 
indices R and S, where both R and S denote states belonging to 12 a and S > R. 

3.3.4. The diagonal equations of  Eq. (44) are also useful. A careful analysis of  
Eqs. (44) and (46) shows that, even for B referring to internal states, the diagonal 
terms of  Eq. (44) (i.e., those for which B = A) do not appear in Eq. (46). The 
coupled equations of  Eq. (46) can be solved independently of  these diagonal 
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equations, and having done so, the diagonal equations can be used to compute 
the directional second-order energy derivatives for all of the internal states 
including the degenerate ones. The details of this calculation are given below and 
in Eqs. (52). 

3.3.5. Transformation to the CSF basis. The blocks of the matrix A and the parts 
of vector D marked with a tilde ( ~ ) contain CI-coefficients for the external 
states. Since these CI-coefficients are not usually known because the solution of 
the SA-MCSCF equations produces only the CI-coefficients of the internal states, 
it is crucial that this part of the coupled equations be transformed to a form 
where these external states' CI-coefficients are not needed. 

In deriving second-order MCSCF theory for SA wave functions, Lengsfield 
[20] introduced a unitary tranformation that accomplishes this goal. The details 
of how to make this unitary transformation are described both by Lengsfield [20] 
and in Ref. [12], and will not be repeated here. The unitary transformation only 
affects the parts of Eq. (46) that are marked with tilde, and when it is applied, 
the final geometrical second-order response equations read: 

/111 h21+ .431+ A41+ A51+ A16 
A 21 A 22 0 0 0 0 
A 31 0 A 33 0 0 A 36 
A 41 0 0 A 44 0 0 
A 51 0 0 0 A 55 A 56 
A 61 • 0 0 0 0 *4 66 

V 1 D I ] 
V 2 D 2 
V 3 = / ) 3  

V 4 1 )  4 • 

V 5 D 5 
V 6 D 6 

The parts of Eq. (49) that have not already been defined are given as: 

(49) 

with: 

A21 31 Tk, ), (50a) RK, nk ~ ARK,nk ~ fOr 2 MKj(TnJI~ --  JR 
J 

ARK, rL = A RK, rL -- aRrfOR MK~MsL H~j -- MKL ER + ZLKL , ( 50b) 

36 A RK, r~ -- 2fOr ~ (6RrC~ -- aRvC r )  
I 

v c' 
D ~ K  -~ fOg ~j M K j  N~R - 2 z.i, Oa 

D~K=-foR~j M K s { N ~ - - 2 ~ W ' ]  R 

OH1j ) 
MKS \ ~-a -- azsE~R ) ' (50c) 

~a - 6uEaR ' (50d) 

 ,oe, Oa ' 

~2C~ a 
V 2 K  ~" V 3 K  ~ Oa 2 2 --  RS*"~ IwS (50f) 

S 

Q 

LKL =-- E CKCL,R R (51a) 
R 

MKL ~ t~KL -- LKL. (51b) 

The row labels for the elements defined in Eqs. (50a)-(500 are R and K, with 
K running over the full N-dimensional CSF-space. For .4 RK, nk21 ,  .A22x RK,SL, ~/'~2R*~, and 
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V~KR belongs to ~n while for 31 33 36 A RK, nk, A Rx, sL, A m~,rv, D3RK, and V3KR belongs 
to Qd. The factor z appearing in Eq. (50b) is an arbitrary constant in units of 
energy, introduced to enable the transformation from the state-basis to the 
CSF-basis. 

3.3.6. The solutions of the response equations contain first- and second-order 
results. The solution vector V to Eq. (49) contains both first- and second-order 
response information. The first-order data contained in V 6 are the state-state 
responses among energetically degenerate, equally weighted internal states. Once 
found, this information can be inserted into Eq. (47) to determine the full 
geometrical first-order CSF-responses for the energetically degenerate and 
equally weighted internal states, thereby fulfilling a primary objective of this 
paper. 

Having determined the second-order orbital responses that appear as the V ~ 
vector of Eq. (49), the diagonal terms of Eq. (44) for internal states can then be 
used to determine the directional second-order energy derivatives along the 
coordinate a: 

I ~CRI(~HIJ I1 E]a=-~ Cff i~>, U~~(Tsa-TJ" ) -N~R +2~- -~-a  \ Oa --6IjE~R . (52) 

These data combine with the directional first-order energy derivative obtained as 
the eigenvalues of the K matrix of Eq. (30) to produce full first- plus second- 
order directional derivative information for the energetically degenerate, equally 
weighted states. 

Additional second-order information appears in the V solution vector of 
Eq. (49). In particular, the second-order CSF responses that do not include 
state-state responses among energetically degenerate, equally weighted states 
are obtained. In analogy with the first-order response case treated here, the 
second-order state-state responses among degenerate, equally weighted states 
can be found by considering the third-order response equations. This avenue 
will not be further pursued here, because it is beyond the goals of the present 
paper. 

In addition to the diagonal terms, there were other second-order equations in 
Eq. (44) for B referring to internal states only that were not used to consturct the 
combined matrix in Eq. (46). These can be used to determine second-order 
state-state responses for internal states R and S that do not both belong to the 
energtically degenerate set, but for which the weighting factors are equal (i.e. 
cog = COs). For such states, Eq. (44) can be rewritten as: 

I -~a~C~(~Hls\ ~a ) V~a~s = ___(E~ - E R ) - 1  ~j C S N's] - 2 ~i - -  6 I j E a R  

(53) 

A detailed analysis reveals that all second-order orbital and state-state 
responses can be obtained from Eqs. (49) and (53) except for the V]~ elements 
among the energetically degenerate, equally weighted internal states. The second 
order responses V,~ for these states have to be determined from the third-order 
equations. Notice that second-order responses, resulting from successive in- 
finitesimal distortions along two distinct coordinates a and b, for example ab VR~, are not considered in this work. 
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4. Conclusion and discussion 

In this work, the evaluation of first-order CSF-responses and first- and second- 
order directional energy derivatives for energetically degenerate states has been 
made practical. Several different circumstances under which two or more states 
can be degenerate were first discussed. Situations for which symmetry dictates 
the first-order state-state responses among the degenerate states were mentioned, 
and it was stressed that these state-state responses usually have to be found by 
considering higher-order response equations. 

In Sect. 3, it was shown how second-order geometrical response equations 
can be formulated such that first-order state-state responses among equally 
weighted, degenerate SA-MCSCF wave functions can be found. In addition, 
expressions were obtained for first- and second-order directional energy deriva- 
tives for these states. For directions or coordinates that do not involve rotation 
or translation, these directional energy derivatives apply to the CSIP energy 
surfaces defined in this work. Our definition of how surfaces and wave functions 
connect as one moves through regions of degeneracy is compared to the 
conventional adiabatic definition in which surfaces are connected via their energy 
ordering. Although the CSIP surfaces have directional energy derivatives for 
geometries at which states are degenerate, they are not analytically differentiable 
at these geometries. 

Our derivation reveals that a specific linear combination of the degener- 
ate states must be formed if the states and surfaces are to connect according to 
our definition. The condition that specifies this linear combination results from 
the first-order geometrical response equations, and it is shown that it depends 
upon the coordinate for which the responses are to be considered. As a 
consequence of this condition it has been argued that in cases where the 
degeneracy is symmetry imposed, credible CSF-responses can generally only be 
expected if the degenerate state averaged states are equally weighted as in this 
work. 

Let us end this discussion by recapitulating the important steps that accord- 
ing to the shown derivations are needed for obtaining the linear CSF-responses 
and first- and second-order directional energy derivatives. The derivations apply 
to a system where the set of internal eigenstates contain a subset of equally 
weighted degenerate states. For this system it is assumed that the SA-MCSCF 
wave functions have been optimized, and that the SA-MCSCF first order 
geometrical response equations [ 12] have been solved for a distortion coordinate. 
The first important step is then to solve Eq. (30), which, dependent upon the 
distortion coordinate, dictates the right linear combinations of the degenerate 
states to be used for the calculation. The directional energy derivatives for these 
states, also result from Eq. (30). Equations (48a)-(48d), (48k)-(48t), and 
(50a)-(50f) are then used to set up the matrix equation Eq. (49). Solving Eq. 
(49) results in both geometrical first- and second-order responses. The first-order 
response are state-state responses among the energetically degenerate states. 
Using Eq. (47) these responses are combined with CI-coefficients and other 
responses obtained from the first-order response equations to evaluate the 
CSF-responses for the equally weighted degenerate internal SA-MCSCF states. 
Hereby we have completely determined all geometrical first-order responses for 
the system. The second-order orbital responses that also results from Eq. (49) are 
used in Eq. (52) to determine the directional second-order energy derivatives for 
the degenerate internal states. 
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